
NASA Contractor Report 198176

ICASE Report No. 95-48

ICASE
KRYLOV METHODS FOR COMPRESSIBLE FLOWS

M. D. Tidriri

Contract No. NASl-19480
June 1995 19950925169
Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

l{SR)*

DTXC QUMITY XWSFECTED 8

Operated by Universities Space Research Association

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

KRYLOV METHODS FOR
COMPRESSIBLE FLOWS

M. D. Tidriri *
Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Hampton, VA 23681-0001

Abstract

In this paper we investigate the application of Krylov methods to compress-
ible flows, and the effect of implicit boundary conditions on the implicit solution
of nonlinear problems. Two defect-correction procedures, namely, Approximate
Factorization (AF) for structured grids, and ILU/GMRES for general grids are
considered. Also, considered here, is Newton-Krylov matrix-free methods that we
combine with the use of mixed discretization schemes in the implicitly defined Ja-
cobian and its preconditioner. Numerical experiments that show the performance
of our approaches are then presented.

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

D

By
Distribution/

Availability Codes

Dist

fcl

Avail and/or
Special

"This work was supported by the National Aeronautics and Space Administration under
NASA contract NAS1-19480 while the author was in residence at the Institute for Computer
Applications in Science and Engineering, NASA Langley Research Center, Hampton, VA 23681-
0001.

1 Introduction
The implicit discretization of the compressible flows leads to a large sparse linear
system which needs to be solved at each time step. In the derivation of this system
one often uses a defect-correction procedure, in which the left-hand side of the
system is discretized using a lower order approximation than for the right-hand
side. This is due to storage considerations and computational complexity, and
also to the fact that the resulting lower order matrix is better conditioned than the
higher order matrix. The resulting methods are only moderately implicit. In the
case of structured, body-fitted grids, the linear system can easily be solved using
approximate factorization (AF), which is among the most widely used methods
for such grids. For unstructured grids, such techniques are no longer valid, and
the system is solved using direct or iterative methods. Because of the prohibitive
computational costs and large memory requirements for the solution of compress-
ible flows, iterative methods are preferred. In these defect-correction methods,
which are of practice in most CFD computer codes, the mismatch in the right and
left hand side operators together with explicit treatment of the boundary condi-
tions, lead to severely limited CFL number, which results in a slow convergence to
steady state aerodynamic solutions. Many authors have tried to replace explicit
boundary conditions with implicit ones (see for instance [19],[15], and [8]). They
showed that high CFL number can be used, however no clear advantages in terms
of CPU time as compared to explicit boundary conditions have been drawn.

We investigate here defect-correction procedures based on Krylov methods;
more particularly we study the ILU/GMRES methods together with implicit
treatment of the boundary conditions. We show in particular that, in the context
of Krylov methods improvements in terms of convergence rate can be achieved
through the use of implicit boundary conditions as compared to explicit ones.
However, the attractive Newton's method convergence property cannot be ap-
proached because of the mismatch of the right and left hand side operators.
Therefore we propose to use Newton-Krylov matrix-free (see [3]) methods com-
bined with mixed discretization in the implicitly defined Jacobian-Preconditioner.
Numerical experiments that show the performance of our approach are then pre-

sented.
In the next section, we describe the Newton-Krylov methodology together

with mixed discretization. We present, in the section 3, the Euler solver. The
description of the implicit boundary conditions is also given in the section 3.
Numerical experiments are presented in the section 4. The last section is devoted
to some remarks and extensions.

2 Newton-Krylov Methods

Newton-Krylov methods first proposed by Brown and Saad [3], have been inves-
tigated for compressible Euler and Navier-Stokes equations using unstructured
grids in [16], [17], and [7], and for structured grids in [4], and [5].

In [16] and [17], the author has applied the matrix-free Newton-Krylov method-
ology to both the transonic and supersonic compressible Navier-Stokes flows. In
[4] and [5], the authors have studied a convection-diffusion model problem, full
potential flows and the transonic compressible Euler flows. They have also pro-
posed and studied the Newton-Krylov-Schwarz methodology. An application to

incompressbile flows is reported in [9].
Newton-like methods, together with fully implicit linear solvers allow, in prin-

ciple, a more rapid asymptotic approach to steady states, f(u) = 0, than do
time-explicit methods or semi-implicit methods based on defect correction. Strict
Newton methods have the disadvantage of requiring solutions of linear systems
of equations based on the Jacobian, /u(u), of the true steady nonlinear residual
and are often impractical in several respects:

1. Their quadratic convergence properties are realized only asymptotically.
In early stages of the nonlinear iteration, continuation or regularization is
typically required in order to prevent divergence.

2. Some popular discretizations (e.g., using limiters) of f(u) are nondifferen-
tiable, leaving the Jacobian undefined in a continuous sense.

3. Even if fu(u) exists, it is often inconvenient or expensive to form either
analytically or numerically, and may be inconvenient to store.

4. Even if the true Jacobian is easily formed and stored, it may have a bad

condition number.

5. The most popular family of preconditioners for large sparse Jacobians on
structured or unstructured two- or three-dimensional grids, the incomplete
factorizations, is difficult to parallelize efficiently.

In this paper we examine how points (1), (3) and (4) may be addressed through
Newton-Krylov methods. For point (2) we refer to [18], and for point (5) we refer

to [4] and [5].
The memory requirements and the computational complexity for the higher-

order matrix representation, whether by analytical or numerical means, are pro-
hibitive. In this context, matrix-free Newton-Krylov methods, in which the action
of the Jacobian is required only on a set of given vectors are natural. To solve
the nonlinear system f(u) = 0, given u°, let ul+1 = ul + XlSul, for / = 0,1,...,
until the residual is sufficiently small, where 6ul approximately solves the Newton
correction equation J(ul)8ul — —/(«'), and parameter A' is selected by some line

search or trust region algorithm [6]. Krylov methods, such as the method of con-
jugate gradients for symmetric positive definite systems or GMRES for general
nonsingular systems, find the best approximation of the solution in a relatively
small-dimensional subspace that is built up from successive powers of the Jaco-
bian on the initial residual. The Krylov solver used throughout this paper is
GMRES [13].

The action of Jacobian J on an arbitrary Krylov vector w can be approximated

^ lr
J{ul)w » - [f(ul + ew) - f{u!) .

Finite-differencing with e makes such matrix-free methods potentially much more
susceptible to finite word-length effects than ordinary Krylov methods [9].

The selection of an optimal parameter e, is non trivial. If e is too small then
the rounding errors made in the numerator are amplified by a factor of order \
which leads to an inaccurate result. If on the other hand e is too large then the
approximation of J(ul)w will be poor. Any reasonable choice of e should attempt
to reach a compromise between these two difficulties. The technique for choosing
the scalar e we use here is:

ii T2
c/l • max{|(«',t;)|,typu,|u|}.

where |u| = (|ui|,..., |fn|)T, and typu is given value depending on u and the
problem to be solved. We note here that GMRES may have an advantage over
other Krylov methods in the matrix-free context in that the vectors v that arise in
GMRES have unit two-norm, but may have widely varying scale in other Krylov
methods for nonsymmetric systems. Right preconditioning spoils the perfect unit
two-norm. For an extended discussion of matrix-free applications of the Jacobian
in the Krylov context, see [3].

Steady aerodynamics applications require the solution of linear systems that
lack strong diagonal dominance, so it is important to verify that properly-scaled
matrix-free methods can be employed in this context.

Although the matrix-free method is attractive because it does not form the
matrix explicitly, the matrix is still required for preconditioning purposes. In [16],
[17], and [7] the authors settled for a compromise that uses a block-diagonal pre-
conditioner. However, most preconditioners require the matrix-explicitly. This
is true for ILU preconditioner. Therefore, we form only, as in defect-corection
method only the matrix of a lower order system to precondition the consistent
higher order system. An approximation to the Jacobian can be used to precon-
dition the Krylov process. Examples are:

1. the Jacobian of a lower-order discretization,

2. the Jacobian of a related discretization that allows economical analytical
evaluation of elements, and

3. domain-parallel preconditioners composed of Jacobian blocks on subdo-
mains of the full problem domain.

We consider here only cases 1 and 2. Case 3 can be combined with any of the
split-discretization techniques (cases 1-2), in principle and is studied in [4] and

[5].
Left preconditioning of the Jacobian with an operator B can be accommo-

dated via
B-lJ{ul)w « - [#-7((u' + ew)) - f{u1)] ,

where f(ul) = B~lf{ul) is stored once, and right preconditioning via

J^B^w w - [f((ul + eB^w)) - f(ul)

Right preconditioning is preferable when the focus is on comparing different pre-
conditioners, since the residual norm measured as a by-product in GMRES and
used in the termination test is independent of any right preconditioning. On the
other hand, any left preconditioning changes the residual norm estimate available
as a by-product in GMRES. Left preconditioning may be preferable when GM-
RES is applied in practice as the solver for an inexact Newton method. When
the preconditioning B~x is of high quality, the left-preconditioned residual serves
as an estimate of the error in the Newton update vector. This leads to a useful
termination condition when Newton step acceptance tests are based on \\6u\\.

3 Compressible Euler Equations

3.1 Governing Equations

The non-dimensional Euler Equations in three dimensions for the dependent vari-
able vector Q = [p, pu, pv, pw, e]T are

Qt + F(Q), + G(Q)y + H(Q)z = 0, (1)

After changing the variables into the curvilinear coordinates

T = t,£ = £{x,y,z),T) = j/(x,y,2r),C= C{x,y,z)

The equations are now expressed in the strong conservation laws as

QT + (F)t + (G)„ + (H\ = 0, (2)

where Q and the contravariant flux vectors, F and G, are defined in terms of the
Cartesian fluxes and the Jacobian determinant of the coordinate system trans-
formation, through

Q = J~lQ
F = j-i({tQ + ZxF + tyG + (zH)

G = J-1 (VtQ + VxF + VyG + rjzH)

H = J"1 (CtQ + CxF + (yG + CzH).

and

J =

(ix iy iz 6 \
Vx Vy Vz Vt

{,x {,y {,z {,t

V o o o l /
Sx t,y £z

Vx Vy Vz

\ Cx (y (z)

det

det

3.2 Finite volume scheme

By assuming the dependent variables to be constant in the interior of cell(i,j,k),
and that the flux vectors F, G, and H are constant over the constant £, 77, and £
surfaces of the cell, respectively, then an implicit finite volume discretization of
equation (1) can be written as

mi - Ql^^V^C + (F$JJe - F^JArjACAr

Using the flux split formula (see below), the above equations can be written
as

AQn + AT(S^F
+
 + F~)n+1 + 8V{G

+ + G~)n+1 + 6C{H+ + H~)n+X) = 0 (4)

where 8$, for example, is defined by

k = -£t[Fi+\l2j,k ~ -fi-l/2,i,fc] (5)

and Sv and 8^ are defined analogously. The split vector for F is given by

F = F+ + F~, (6)

with similar expressions for G and H. F+ is associated with the eigenvalues that
have positive signs and F~ is associated with the eigenvalues that have negatives
signs (see Steger-Warming)., and G+,G~,H+,andH~ are defined analogously.
The implicit split-flux discretization is given by

[I 4- Ar[{6t(F+ + F~)n+1 + 8t{G
+ + G~)n+1 + 8V{H+ + H~)n+1}

= -Ar(SlFn + 8e
vG

n + 8\Hn) (7)

A linearization of first order in time of the above equation yields

[/ + Ar{8\A+- + 8\A~- + 8^- + 81B-■ + 8\C+- + 8\C--)AQn

= -Ar(8lFn + 8e
vG

n + 8e
cH

n) (8)

Where a distinction has been made between the implicit spatial difference op-
erator and the explicit spatial difference operators by using supersripts i and e,
respectively. The dots indicate that the difference operators apply to the product
of the Jacobian matrices with AQn. The matrices A+,A~,B+, B~, C+,andC~
are defined by

dF+ _ dF~
A+ = W A~ = W' (9)

*-% c-w-
The finite volume discretization given by equation (3) requires the numeri-

cal flux at a cell face. These fluxes are computed using the Roe's approximate
Riemann solver [12]. Three limiters are employed: minmod, Superbee, and Van
Leer. The Jacobians are evaluated using first-order Roe's scheme, or the flux-
vector split scheme [14], which corresponds to the true partials of the positive and
negative flux vectors as described earlier. However, the flux-vector split scheme
has been shown to give improved convergence rates over the Roe matrices. Be-
cause the Jacobian matrices corresponding to the flux-vector split scheme work
better on the left hand side in the solution matrix than the Roe matrices, this
is the scheme presently being employed in the context of defect correction. This
results in inconsistent left and right hand side operators.

Remark 3.1 For most CFD codes, the implicit spatial differences are only first-
order accurate. Because deriving higher-order accuracy is difficult, and the re-
sulting matrices are very large and require a lot of storage, large operation count
in its evaluation, and may be very difficult to invert.

Remark 3.2 For Roe's scheme, it is difficult to obtain the true Jacobian. Barth
[1], has obtained such Jacobian in two dimensions. However, for three dimen-
sions, the evaluation of such Jacobian needs large operation count.

Following these remarks, the implicit spatial differences in equation (1) are
approximated, as mentioned above, through a first-order accurate scheme.

The explicit spatial differences in equation (1) are approximated using the
higher order formulations of Roe's scheme, that are based on the work of Osher
and Chakravarthy [11].

3.3 Explicit boundary conditions

The boundary conditions are derived using the locally one-dimensional charac-
teristic variable boundary conditions, which yields (for the calculations see for

example [10]):

3.3.1 Farfield-Subsonic Inflow

Pb = (1/2)P0 + Pi + sign(Xl
k) poc0[kx(ua - u,-) + ky(va - v,-) + h(wa - w{)]

Pb = pa + [(Pb-Pa)/c2
0]

ub = ua + kx[(Pa-Pb)/(p0c0)]sign(Xl)

vb = va + ky\(Pa-Pb)/{p0c0)]sign(\lk)

wb = wa + kz[{Pa-Pb)/(poC0)]sign(Xt
k)

Note that these signs correspond to the sign of the first three eigenvalues, and
hence this is a means of writing the code for general applications with arbitrary
orientation of the computational coordinates. The point a is outside the compu-
tational domain, point b is on the computational boundary, and i is inside the
computational domain.

3.3.2 Farfield-Subsonic Outflow

Pb = Pa

Pb = Pa + [(Pb ~ Pa)/C2
0]

ub = ua + kx[(Pa - Pb)I(p0c0)]s\grv(\\)

vb = va + ky[(Pa - P6)/(/90c0)]sign(At
fc)

io6 = wa + M(P0-P(,)/(/90c0)]sign(A]t)

7

3.3.3 Impermeable Surface

Ph = Pr - +p0c0

Vfo == t?y rCyifögUr ~J~ KyVy ~\~ fC^XVfJ

Wb — wr — kz{kxuT + feyUr + kzwr)

where the point r is the center of the first cell from the boundary and the minus
sign in equation (1) is used if r is in the positive k direction from the boundary,
and the plus sign is used if r is in the negative direction from the boundary.

3.3.4 Farfield-Supersonic Inflow

In this case all eigenvalues have the same sign. Since we have an inflow case all
variables are specified.

3.3.5 Farfield-Supersonic Outflow

In this case also, all eigenvalues have the same sign. But now we have an outflow
case, therefore, all variables must be obtained from the solution in the compu-
tational domain. All variables are extrapolated from inside the computational
domain to the boundary.

3.4 Implicit boundary conditions

In the implicit form, the above boundary conditions can be written in the form
of operators formulated as functions of the conservation vector W:

FB{W) = 0

and are implemented implicitly through:

dFB,

dW
■SW = -FB{W).

Using these implicit boundary conditions, we show that starting from a small
initial CFL number (10), CFL may be adaptively advanced according to:

CFL;+1 = CFL' • ".{y1'!"1.
Il/wlr

This is the key to the successful implementation of Newton-Krylov matrix-free
method studied in this paper.

4 Numerical Results

To test the different methodologies developed here we consider a NACA0012
steady transonic airfoil at an angle of attack of 1.25 degrees and a freestream Mach
number of 0.8. We consider two meshes, with 2048 and 4096 cells, respectively.
We call the first mesh, meshl, while the second will be denoted by mesh2. In all
computations performed herein the solution obtained agrees with the standard
one.

The initial code is an EAGLE-derivative code [10] that employs the discretiza-
tion described in section 3 with explicit boundary conditions, over a body-fitted
grid, and which uses a linear solver of an approximate factorization (AF) type
(see for example [2]).

We have implemented implicit boundary conditions as described in section
3. We have also replaced the (AF) solver by ILU/GMRES solver. And we have
implemented the Newton-Krylov matrix-free methods.

We first compare the defect-correction procedures of (AF) type and
ILU/GMRES with explicit boundary conditions on the test case described above.
Then, we compare these results with those obtained by replacing explicit bound-
ary conditions by implicit ones. Finally we study the performance of Newton-
Krylov matrix-free. All calculations performed here are done on the same Sparc20
machine.

4.1 Defect-Correction procedures: meshl case

4.1.1 Explicit boundary conditions

We compare here the results obtained using approximate factorization (AF)
method and ILU/GMRES when the boundary conditions are explicit. We ob-
serve that to reach the same level of accuracy, the CPU time necessary for AF
method is almost double the time necessary to reach the same level of accuracy
with the Krylov method (ILU/GMRES) as can be seen in figures 1 and 2, which
show, respectively, the iteration count versus the steady residual norm and the
CPU time versus the steady residual norm. Moreover, using (AF) method the
steady residual norm cannot be dropped to the same final steady residual norm
reached by the converged solution obtained using ILU/GMRES. As can be seen
below, finer mesh is needed for the steady residual norm to be dropped to the
same level as for the Krylov method, when AF is used.

4.1.2 Implicit boundary conditions

We first compare different calculations obtained using different CFL numbers.
The results are presented in figures 3 and 4 where we show a comparison of the
CPU time versus the steady residual norm. These calculations are performed

using a CFL number equal to 6.5, 100, and 500 respectively. From these com-
parisons we can see that using high CFL number improves the convergence rate.
However, when the CFL number is larger than 100, no further improvement can
be obtained. This is due to the mismatch of the left and right hand side oper-
ators. We will see in the next section that this drawback can be removed using
Newton-Krylov methodology described in section 2. We will now validate the
CFL strategy described in section 3. In figures 5 and 6 we compare the calcula-
tions performed with a CFL number of 100 to the calculations performed with
the CFL strategy described in section 3. This comparison shows the validation of
using these techniques. It also shows that the converged solution is obtained in
about the same CPU time. In figure 7, we show the CFL versus iteration count.
Now we show in figures 8 and 9, comparisons of steady state residual norm ver-
sus the iteration count and CPU time for the converged solution obtained using
explicit boundary conditions with a CFL number equal to 6.5 and using implicit
boundary conditions with a CFL of 100. We observe that an improvement in
terms of the CPU time is obtained when we use implicit boundary conditions as
compared to explicit ones. This comparison highlights the gain obtained using
implicit boundary conditions when Krylov methods are used as linear solvers. We
should notice that using AF solver, the implicit boundary conditions do not im-
prove the convergence rate because the AF method is based on an approximation
of first order to the linear system to be solved.

4.2 Newton-Krylov matrix-free procedures: meshl case

We study here the Newton-Krylov matrix-free methodology described in section
2. The techniques used in the choice of the finite differencing parameter are de-
scribed in section 2. To take full advantage of the power of Newton's method, and
thus to allow a more rapid asymptotic convergence to the steady state solution, we
use the CFL strategy described in section 3, and validated above. The ILU pre-
conditioner we use here is formed from a lower order discretization and is exactly
the same as that used already in the defect-correction procedure studied above.
This results in a mixed Jacobian/Preconditioner discretization. More precisely,
the explicitly available (Van Leer) first-order flux vector split Jacobian (JVL) is
used to precondition the implicitly defined (Roe) higher-order flux difference split
Jacobian (JR) at each implicit time step. In matrix terms, the correction u is
obtained as the approximate solution of,

{JVL)~
1
JRU = -{JVLY^IR-

While in the defect-correction context, this correction was obtained as the
approximate solution of,

JVLu = —JR.

We first compare the results obtained using ILU/GMRES with implicit bound-
ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The

10

results are presented in figures 10 and 11, in which we show, respectively, the
steady residual versus the iteration count and the steady residual versus the CPU
time. We perform 4 Newton iterations in each implicit time step. The stopping
criterion corresponds to a steady residual norm of 10-9.

In figures 12 and 13 we show a comparison of the four methods studied in this
paper. Clearly, we can see that Newton-Krylov matrix-free outperforms all the
other three methods.

To refine our analysis we have performed the same study but on a much finer
grid. The results are discussed below.

4.3 Defect-Correction procedures: mesh2 case

4.3.1 Explicit boundary conditions

We compare here the results obtained using approximate factorization (AF)
method and ILU/GMRES when the boundary conditions are explicit. Similarly
to the meshl case, we observe that in order to reach the same level of accuracy,
the CPU time necessary for AF method is almost double the time necessary with
the Krylov method (ILU/GMRES) as can be seen in figures 14 and 15, which
show, respectively, the iteration count versus the steady residual norm and the
CPU time versus the steady residual norm.

4.3.2 Implicit boundary conditions

As for the meshl case, we first compare different calculations obtained using
different CFL numbers. The results are presented in figures 16 and 17 where we
show a comparison of the steady state residual norm versus CPU time. These
calculations are performed using a CFL number equal respectively to 5, 100, and
500. These comparisons show again that using high CFL number improves the
convergence rate. However, when the CFL number is larger than 100, no further
improvement can be obtained. This is due to the mismatch of the left and right
hand side operators. We will see in the next section that this drawback can
be removed using Newton-Krylov methodology described in section 2. We will
now, validate the CFL strategy described in section 3. In figures 18 and 19 we
compare the calculations performed with CFL 100 to the calculations performed
with the CFL strategy described in section 3. This comparison shows again the
validation of using these techniques. It also shows that the converged solution
is obtained in about the same CPU time. In figure 20, we show the CFL versus
iteration count. Now we show in figures 21 and 22, comparisons of steady state
residual norm versus the iteration count and CPU time for the converged solution
obtained using explicit boundary conditions with a CFL number equal to 5 and
using implicit boundary conditions with a CFL number equal to 100. We observe
that an improvement in terms of the CPU time is obtained when we use implicit
boundary conditions as compared to explicit ones. This comparison highlights

11

again the gain obtained using implicit boundary conditions when Krylov methods
are used as linear solvers.

4.4 Newton-Krylov matrix-free procedures: mesh2 case

Here, we study here again the Newton-Krylov matrix-free methodology described
in section 2. The techniques used in the choice of the finite differencing param-
eter are described in section 2. To take full advantage of the power of Newton's
method, and thus to allow a more rapid asymptotic convergence to the steady
state solution, we use the CFL strategy described in section 3, and validated
above. The ILU preconditioner we use here is formed from a lower order dis-
cretization and is exactly the same as that used already in the defect-correction
procedure studied above. This results in a mixed Jacobian/Preconditioner dis-
cretization. More precisely, the explicitly available (Van Leer) first-order flux
vector split Jacobian (JVL) is used to precondition the implicitly defined (Roe)
higher-order flux difference split Jacobian (JR) at each implicit time step. In
matrix terms, the correction u is obtained as the approximate solution of,

(JvL)-1JRU=-(JvL)-1fR.

While in the defect-correction context, this correction was obtained as the
approximate solution of,

JVLU = —/R.

We first compare the results obtained using ILU/GMRES with implicit bound-
ary conditions and with CFL of 100, and using Newton-Krylov matrix-free. The
results are presented in figures 23 and 24, in which we show, respectively, the
steady residual versus the iteration count and the steady residual versus the CPU
time. We perform 4 Newton iterations in each implicit time step. The stopping
criterion corresponds to a steady residual norm of 10-9.

In figures 25 and 26 we show a comparison of the four methods studied in
this paper. The comparison highlights the efficiency and performance of the
Newton-Krylov matrix-free method.

5 Conclusions

In this paper we have demonstrated the performance of Krylov based methods.
The convergence rate is improved using implicit boundary conditions as compared
to explicit ones. The higher-order Jacobian needed in the Newton's method need
not be computed explicitly in the Newton-Krylov matrix-free context. The use of
mixed discretization (higher-order) Jacobian / (lower-order) preconditioner, re-
sults in an efficient preconditioned Newton-Krylov matrix-free algorithm in terms
of CPU time as has been shown in the numerical experiments presented in this
study.

12

References

[1] T. J. Barth, Analysis of Implicit Local Linearization Techniques for Upwind
and TVD Algorithms, AIAA Paper No. 87-0595, January 1987.

[2] R. M. Beam, and R. F. Warming, An Implicit Factored Scheme for the
Compressible Navier-Stokes Equations, AIAA Journal, Vol. 16, No. 4, April
1978, pp. 393-402.

[3] P. N. Brown and Y. Saad, Hybrid Krylov Methods for Nonlinear Systems of
Equations, SIAM J. Sei. Stat. Comp. 11(1990), 450-481.

[4] X.-C. Cai, W. D. Gropp, D. E. Keyes and M. D. Tidriri, "Parallel implicit
methods for aerodynamics," Seventh International Conference on Domain
Decomposition Methods for Partial Differential Equations, D. Keyes, J. Xu,
eds., AMS, 1994.

[5] X.-C. Cai, W. D. Gropp, D. E. Keyes and M. D. Tidriri, " Newton-Krylov-
Schwarz Methods in CFD," Proceedings of the International Workshop on
the Navier-Stokes Equations, Notes in Numerical Fluid Mechanics, R. Ran-
nacher, eds. Vieweg Verlag, Braunschweig, 1994.

[6] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Uncon-
strained Optimization and Nonlinear Equations, Prentice-Hall, Inc., Engle-
wood Cliffs, New Jersey, 1983.

[7] Z. Johan, T. J.R. Hugues, K. K. Mathur, and S. L. Johnsson, A data parallel
finite element method for computational fluid dynamics on the Connection
Machine system, Computer Methods in Applied Mechanics and Engineering,
Vol. 99 (1992), pp. 113-124.

[8] M.-S. Liou, and B. Van Leer, Choice of Implicit and Explicit Operators for
the Upwind Differencing Method, AIAA Paper, AIAA-88-0624 (1988).

[9] P. R. McHugh and D. A. Knoll, Inexact Newton's Method Solutions to
the Incompressible Navier-Stokes and Energy Equations Using Standard and
Matrix-Free Implementations, AIAA Paper, 1993.

[10] J. S. Mounts, D. M. Belk and D. L. Whitfield, Program EAGLE User's
Manual, Vol. IV - Multiblock Implicit, Steady-state Euler Code, Air Force
Armament Laboratory TR-88-117, Vol. IV, September 1988.

[11] S. Osher, and S. R. Chakravarthy, Very High Order Accurate TVD Schemes,
ICASE Report No. 84-44, September 1984.

[12] P. L. Roe, Approximate Riemann Solvers, Parameter Vector, and Difference
Schemes, J. Comp. Phys. 43(1981), 357-372.

13

[13] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems, SIAM J. Sei. Stat. Comp.

7(1986), 865-869.

[14] J. L. Steger and R. F. Warming, Flux Vector Splitting of the Inviscid Gasdy-
namics Equations with Applications to Finite-Difference Methods, J. Comp.

Phys. 40(1981), 263-293.

[15] W. T. Thomkins, Jr. and R. H. Bush, Boundary Treatments for Implicit
Solutions to Euler and Navier-Stokes Equations, J. Comp. Phys. 48. (1982),

302-311.

[16] M. D. Tidriri, Coupling of different models and different approximations in
the coputation of external flows, PhD thesis, Univ. of Paris XI, 1992.

[17] M. D. Tidriri, Domain Decompositions for Compressible Navier-Stokes Equa-

tions, J. Comp. Phys. July, 1995.

[18] V. Venkatakrishnan, Convergence to Steady State Solutions of the Euler
Equations on Unstructured Grids with Limiters, To appear in J. Comp. Phys.

[19] H. C. Yee, R. M. Beam, and R. F. Warming Boundary Approximations for
Implicit Schemes for One-Dimensional Inviscid Equations of Gasdynamics,

AIAA Journal, Vol.20, NO.9, September 1982.

14

i -i 1 1 1—- i
"af-15IT"

"ilu-gmrese6.5IT"

--s\

"
~""V-N

N
-

N~"\
^"^*-^v.

Nv.i.

-

•

"'"'""''WH Lh , >,, ,>

1 1 1 1 -.1.
200 400 600 800 1000 1200 1400 1600

Figure 1: Steady-state residual versus iteration count for approximate factoriza-
tion (AF) and ILU/GMRES solvers.

-2

-3

-7

"af-15CPU"
"ilu-gmrese6.5CPÜ"

^""^\}4\}},1K^

500 1000 1500 2000 2500 3000

Figure 2: Steady-state residual versus CPU time for approximate factorization
(AF) and ILU/GMRES solvers.

15

-1 I 1 1 1 —i 1-- i

"ilu-gmresi6.5IT" —
1.5 "ilu-gmresilOOIT" - — _

"ilu-gniresi500IT" ■-

-2
i \ -

2.5 -

-3
\

3.5 \ -

-4

'**
4.5 *\ ^^ ~

-5

5.5

-6

I 1 1 1

-

200 400 600 800 1000 1200 1400 1600

Figure 3: Steady-state residual versus iteration count for ILU/GMRES solver
with different CFL: 6.5, 100, and 500.

-1 — 1 1 1 i —i i

"ilu-graresi6.5CPU" —
1.5

"ilu-grnresilOOCPU" - — .
"ilu-gmresi500CPU" ■-

i \
-2 ■> ^v

2.5 \ ^\ -

-3 \\ -

3.5 \\

-4 - v.. \\ -

4.5 - % \^ -

-5 - V'- N. -

5.5 - ~v-o... -

-6

i i i i ' '

-

500 1000 1500 2000 2500 3000 3500

Figure 4: Steady-state residual versus CPU time for ILU/GMRES solver with
different CFL: 6.5, 100, and 500.

16

^ 1 —i 1— i i i —i —

t *^ "ilu-gmresilOOIT"

-2 -V '-> "ilu-gmresivIT"

2.5 'A -

-3 X X

3.5 ^^=*

-4

4.5 NN,

-5 ^;C^.

5.5

^^^:;;::;;^c—
-6

i 1 1 1 1 1 1

600 700 800

Figure 5: Steady-state residual versus iteration count for ILU/GMRES solvers
with CFL constant equal 100, and with adaptively increasing CFL.

1 1 1 1 1 1 1 1 1

1 "\ "ilu-gmresilOOCPU"
-2 -I '" "ilu-gmresivCPU"

2.5 \H -

-3
\S -

3.5 V

-4 ^s„

4.5 \x

-5
^\^

b.b

^^^^
-6

1 i i i i i i i

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6: Steady-state residual versus CPU time for ILU/GMRES solvers with
CFL constant equal 100, and with adaptively increasing CFL.

17

16000

14000

12000 -

10000 -

8000

6000

4000 -

2000 -

100 200 300 400 600 700 800 900 1000

Figure 7: CFL versus iteration count for ILU/GMRES solvers.

" ilu-gmrese6. 5IT"
"ilu-gmresilOOIT"

1000 1200 1400 1600

Figure 8: Steady state residual versus iteration count for ILU/GMRES solvers
with explicit boundary conditions and implicit boundary conditions.

18

"ilu-gmrese6.5CPU"
"ilu-gmresilOOCPU"

1500 2000 2500 3000

Figure 9: Steady state residual versus CPU time for ILU/GMRES solvers with
explicit boundary conditions and implicit boundary conditions.

800

Figure 10: Steady-state residual versus iteration count for defect correction
(ILU/GMRES) and Newton-Krylov matrix-free solvers.

19

u 1 1 1 1 1 1 I 1 1

"ilu-gmresilOOCPU"
"nkCPURES"

■ >

-2 ~ V *' *~*

-4 - \
-

-6
\

-

-8

Nv,
10

12

i ' l i i i i i i

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 11: Steady-state residual versus CPU time for defect correction
(ILU/GMRES) and Newton-Krylov matrix-free solvers.

-14

T 1 1

"af-15IT"
"ilu-gmrese6.5IT"
"ilu-gmresil00IT"

"nklTRES"

^-^IJAIJ^V^IA

200 400 600 800 1000 1200 1400 1600

Figure 12: Steady-state residual versus iteration count for approximate factor-
ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with
implicit boundary conditions, and Newton-Krylov matrix-free solvers.

20

-4 -

-10

-14

T" 1

"af-15CPU"
ilu-gmrese6.5CPU"
ilu-gmresilOOCPU"

"nkCPURES"

500 1000 1500 2000 2500 3000

Figure 13: Steady-state residual versus CPU time for approximate factorization
(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit
boundary conditions, and Newton-Krylov matrix-free solvers.

21

-6

-7

"a£-ITRES"
"ilugrares-ITRES"

i i i 1 _J L_

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 14: Steady-state residual versus iteration count for approximate factor-
ization (AF) and ILU/GMRES solvers.

1 ' 1 1 1"
"af-CPURES"

*l
"ilugmres-CPURES"

- ~%-

\
-

\V

v\^

- ^~"~~^_ -

V
V*

1 1 i 1 1

-5 -

2000 4000 6000 8000 10000 12000

Figure 15: Steady-state residual versus CPU time for approximate factorization
(AF) and ILU/GMRES solvers.

22

-1

-1.5

-2

-2.5

-3

-3.5

-4

-4.5

-5

-5.5

-6

1 ' 1 1 1 1 1 1

"ilugmresi5IT" —
"ilugmresilOOIT" -
"ilugmresi500IT" --

L ^_ -

'•i. -
%

. \ _

\
.

\\ -

1 1 1 1 i i i

-

200 400 600 800 1000 1200 1400 1600

Figure 16: Steady-state residual versus iteration count for ILU/GMRES solver
with different CFL: 5, 100, and 500.

"ilugmresi5CPO"
"ilugmresilOOCPU"
"ilugmresi500CPU"

2000 3000 4000 5000 6000 7000

Figure 17: Steady-state residual versus CPU time for ILU/GMRES solver with
different CFL: 5, 100, and 500.

23

-1

-1.5

-2

-2.5 -

-3.5

-4

-4.5

-5

-5.5

- ^--^

1 1 1 1 1 r i i

"ilugmresilOOIT"
"ilugmresivIT"

"X -

-\
\ '\

. -

V v\
-

- \ -

-

1

1

1

-

■ I 1 1 1 1 1 1

100 200 300 400 500 600 700 800 900

Figure 18: Steady-state residual versus iteration count for ILU/GMRES solvers
with CFL constant equal 100, and with adaptively increasing CFL.

-1 1 1 r 1 1 P 1 i i

"ilugmres i10 0CPU"

1.5
'-''\

"ilugmresivCPU"

-2 \ "

2.5 - \ V'\" "

-3 \^ "

3.5
\, "

-4
^v \

4.5 ^\/\

-5 ^~~~^i^_._ -

5.5

i i 1 1 T 1 1 1

500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 19: Steady-state residual versus CPU time for ILU/GMRES solvers with
CFL constant equal 100, and with adaptively increasing CFL.

24

1600

1400

1200

800 -

600 -

400

200

1000 1200

Figure 20: CFL versus iteration count for ILU/GMRES solvers.

"ilugmres-ITRES"
"ilugmres i10 0IT"

200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 21: Steady state residual versus iteration count for ILU/GMRES solvers
with explicit boundary conditions and implicit boundary conditions.

25

-1 1 1 1 I ■ 1 i

"ilugmres-CPURES" -
"ilugmresilOOCPO" -

l.b

-2 -

2.5
U \^ -

-3 - \ -

3.5 \

-4 - ^\ -

4.5
NN

~

-5

5.5

' i i l i i

-

1000 2000 3000 4000 5000 6000 7000

Figure 22: Steady state residual versus CPU time for ILU/GMRES solvers with
explicit boundary conditions and implicit boundary conditions.

-10

 1 1

"nklTRES" —
"ilugmresilOOIT" —

100 200 300 400 500 600 700 800 900

Figure 23: Steady-state residual versus iteration count for defect correction
(ILU/GMRES) and Newton-Krylov matrix-free solvers.

26

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 24: Steady-state residual versus CPU time for defect correction
(ILU/GMRES) and Newton-Krylov matrix-free solvers.

-10

A 1 1 i i i I 1 T —t -
"af-ITRES" -

"ilugmrese5ITRES" --
"ilugmresilOOIT" •-

"nklTRES" -
I". \\

_
; \ ^^^-^

**-^"""^-*^_

i \ \ -

\ v\
f '■■•.._

_
-

i

1
s-^Vv.

-

1
j

-

i

i ■ ' i i i i

-

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 25: Steady-state residual versus iteration count for approximate factor-
ization (AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with
implicit boundary conditions, and Newton-Krylov matrix-free solvers.

27

-2

-3

-4

-6

-9 -

"af-CPÜRES"
"ilugmrese5CPURES"

"ilugmresi10OCPU"
"nkCPURES"

-■-tM'. /v*Vv

2000 4000 6000 8000 10000 12000

Figure 26: Steady-state residual versus CPU time for approximate factorization
(AF), ILU/GMRES with explict boundary conditions, ILU/GMRES with implicit
boundary conditions, and Newton-Krylov matrix-free solvers.

28

(2D) II Print II 02 Jun 1995 II cpplol.pll II

1.0

■ '' ' ' ' ' ' ' ■ ■ ' '

Figure 27: Pressure coefficient.

29

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONVf(Lesve blank) 2. REPORT DATE

June 1995
REPORT TYPE AND DATES COVERED

Contractor Report

4. TITLE AND SUBTITLE

KRYLOV METHODS FOR COMPRESSIBLE FLOWS

6. AUTHOR(S)

M. D. Tidriri

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science
and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 95-48

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-198176
ICASE Report No. 95-48

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushneil
Final Report
To be submitted to Computer Methods in Applied Mechanics and Engineering

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 64

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
In this paper we investigate the application of Krylov methods to compressible flows, and the effect of implicit
boundary conditions on the implicit solution of nonlinear problems. Two defect-correction procedures, namely,
Approximate Factorization (AF) for structured grids, and ILU/GMRES for general grids are considered. Also,
considered here, is Newton-Krylov matrix-free methods that we combined with the use of mixed discretization
schemes in the implicitly defined Jacobian and its preconditioner. Numerical experiments that show the performance
of our approaches are then presented.

14. SUBJECT TERMS
Defect-correction; ILU/GMRES; matrix-free; Newton-Krylov

15. NUMBER OF PAGES

31

16. PRICE CODE

 A03
17. SECURITY CLASSIFICATION

OF REPORT
Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION
OF ABSTRACT

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

